Monat: Mai 2023

Pereira & Gamboa (2023): In situ carbon storage potential in a buried volcano

Ricardo Pereira, Davide Gamboa IN: Geology,

In situ mineral carbonation in porous and permeable mafic and ultramafic volcanic rocks is proposed to be a promising process that can contribute toward safe and permanent CO2 sequestration. Here,the authors investigated a partially buried Late Cretaceous composite volcano located offshore the central West Iberian margin as a proxy for potential in situ mineral carbonation in volcanic edifices on continental margins worldwide. Based on seismic data, geochemistry, and petrophysical properties, deterministic scenarios for permanent carbon storage were estimated.


Webinar: The value of Research, Development & Demonstration in the Commercial Deployment of CCS

Wed, Jun 7, 2023 4:00 PM – 5:00 PM CEST by IEAGHG

The aim of the webinar is to describe some of the R&D conducted and its value to commercial deployment of CCS. SINTEFF, TERC and TNO will inform the wider CCS community on how their CCS research activities give value to large-scale trials and ultimately translates to commercial deployment of CCS projects around the world. Practical examples of some of the studies conducted and their impact on large scale CCS projects will be described.


Xiang et al. (2023): Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization

Zhiling Xiang, Congyan Liu, Chunhui Chen, Xin Xiao, Thien S. Nguyen, Cafer T. Yavuz, Qiang Xu, Bo Liu IN: Cell Reports Physical Science 4, 101383,

Here, the authors report the pressure swing crystallization of CO2 in a single-crystalline guanidinium sulfate-based clathrate salt under practical conditions of 52 kPa and 298 K, with a high CO2 density (0.252 g cm−3) and capacity (17 wt %). The captured CO2 is released as a pure stream through moderate means of pressure or temperature stimulation, all while the desorbed Gua2SO4 is ready for another cycle. The clathrate is selective exclusively to CO2 even in the presence of common flue gas components, such as water vapor and N2, owing to the specific electrostatic interaction between the CO2 and guanidinium cations. The mechanism unraveled through single-crystal studies is distinctively different from physisorption or chemisorption, opening up a promising venue for future carbon capture and storage technologies through rapid CO2 solidification using an abundant salt.


Climeworks Direct Air Capture Summit 2023

June 6, 2023, 08 am -7 pm CET, by climeworks, hybrid: in Zurich, Switzerland and online

Since 2020, Climeworks Direct Air Capture Summit has been a unique platform that brings together the carbon removal industry’s key players. Featuring technology, business, climate science and policy experts, our full-day event aims to spark insightful discussions and inspire new partnerships to fulfil the potential of direct air capture and carbon removal in the fight against global warming. Inspire, connect, act – these are the core pillars of the Direct Air Capture Summit and through which we want to drive meaningful progress in the scale up of the carbon removal industry.


La Plante et al. (2023): Electrolytic Seawater Mineralization and the Mass Balances That Demonstrate Carbon Dioxide Removal

Erika Callagon La Plante, Xin Chen, Steven Bustillos, Arnaud Bouissonnie, Thomas Traynor, David Jassby, Lorenzo Corsini, Dante A. Simonetti, Gaurav N. Sant IN: ACS EST Engg.,

The authors present the mass balances associated with carbon dioxide (CO2) removal (CDR) using seawater as both the source of reactants and as the reaction medium via electrolysis following the “Equatic” (formerly known as “SeaChange”) process. This process involves the application of an electric overpotential that splits water to form H+ and OH ions, producing acidity and alkalinity, i.e., in addition to gaseous coproducts, at the anode and cathode, respectively. Geochemical simulations quantify the extents of net CO2 removal including the dependencies on the process configuration. It is furthermore indicated that the efficiency of realkalinization of the acidic anolyte using alkaline solids depends on their acid neutralization capacity and dissolution reactivity.


Report: Strengthening MRV standards for greenhouse gas removals to improve climate change governance

Leo Mercer & Josh Burke; Grantham Research Institute on Climate Change and the Environment

This report seeks to identify the factors underpinning the monitoring, reporting and verification (MRV) of greenhouse gas removal (GGR) across the spectrum of biological, chemical and geochemical techniques, and the risks associated with GGR-specific MRV. It provides recommendations for policymakers to reduce the complexity and ensure the industry continues to innovate with high levels of integrity.


Nature – Rosentreter et al. (2023): Coastal vegetation and estuaries are collectively a greenhouse gas sink

Judith A. Rosentreter, Goulven G. Laruelle, Hermann W. Bange, Thomas S. Bianchi, Julius J. M. Busecke, Wei-Jun Cai, Bradley D. Eyre, Inke Forbrich, Eun Young Kwon, Taylor Maavara, Nils Moosdorf, Raymond G. Najjar, V. V. S. S. Sarma, Bryce Van Dam, Pierre Regnier IN: Nat. Clim. Chang.;

Coastal ecosystems release or absorb carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but the net effects of these ecosystems on the radiative balance remain unknown. The authors compiled a dataset of observations from 738 sites from studies published between 1975 and 2020 to quantify CO2, CH4 and N2O fluxes in estuaries and coastal vegetation in ten global regions.


Wei et al. (2023): Can ocean carbon sink trading achieve economic and environmental benefits? Simulation based on DICE-DSGE model

Zhenhao Wei, Xuzhao Jiang, Zhibo Zhao, Wenli Xu, Lingyi Guo, Qiaoyu Zheng IN: Environ Sci Pollut Res,

Low-carbon development requires joint efforts in terms of “carbon reduction” and “carbon sink increase.” This study thus proposes a DICE-DSGE model for exploring the environmental and economic benefits of ocean carbon sinks and provides policy suggestions for marine economic development and carbon emission policy choices.


Science – Roebroek et al. (2023): Releasing global forests from human management: How much more carbon could be stored?

Caspar T. J. Roebroek, Gregory Duveiller, Sonia I. Seneviratne, Edouard L. Davin, Alessandro Cescatti IN: Science, Vol 380 (6646), pp. 749-753, DOI: 10.1126/science.add5878

The authors integrated global maps of forest biomass and management with machine learning to show that by removing human intervention, under current climatic conditions and carbon dioxide (CO2) concentration, existing global forests could increase their aboveground biomass by up to 44.1 (error range: 21.0 to 63.0) petagrams of carbon. This is an increase of 15 to 16% over current levels, equating to about 4 years of current anthropogenic CO2 emissions.


PhD-thesis: Atmospheric carbon removal via industrial biochar systems – a techno-economic-environmental assessment

Fawzy, Samer; Queen’s University Belfast

An in-depth investigation of climate change mitigation strategies was carried out, detailing 3 major approaches, namely emissions reduction, atmospheric carbon removal and radiative forcing geoengineering. Based on an assessment of the prominent carbon removal technologies, it was determined that carbon removal via industrial biochar systems is a very promising approach. Accordingly, the dimensions related to biochar-based carbon removal systems were explored in detail.