La Plante et al. (2023): Electrolytic Seawater Mineralization and the Mass Balances That Demonstrate Carbon Dioxide Removal

Erika Callagon La Plante, Xin Chen, Steven Bustillos, Arnaud Bouissonnie, Thomas Traynor, David Jassby, Lorenzo Corsini, Dante A. Simonetti, Gaurav N. Sant IN: ACS EST Engg.,

The authors present the mass balances associated with carbon dioxide (CO2) removal (CDR) using seawater as both the source of reactants and as the reaction medium via electrolysis following the “Equatic” (formerly known as “SeaChange”) process. This process involves the application of an electric overpotential that splits water to form H+ and OH ions, producing acidity and alkalinity, i.e., in addition to gaseous coproducts, at the anode and cathode, respectively. Geochemical simulations quantify the extents of net CO2 removal including the dependencies on the process configuration. It is furthermore indicated that the efficiency of realkalinization of the acidic anolyte using alkaline solids depends on their acid neutralization capacity and dissolution reactivity.