Cameli et al (2024): Conceptual Process Design and Technoeconomic Analysis of an e-Methanol Plant with Direct Air-Captured CO2 and Electrolytic H2
Fabio Cameli, Evangelos Delikonstantis, Afroditi Kourou, Victor Rosa, Kevin M. Van Geem, Georgios D. Stefanidis IN: Energy Fuels, https://doi.org/10.1021/acs.energyfuels.3c04147
CO2-based methanol synthesis routes solely based on renewable electricity have been proposed. However, the production route via direct air-captured (DAC) CO2 and green H2 from water electrolysis (WE) is not industrially available, and in-depth feasibility studies are needed to determine its viability. By designing a 50 kt y–1 e-MeOH production plant based on DAC-CO2 and electrolytic H2, the authors assess the plant’s performance and economic feasibility against the state-of-the-art industrial manufacturing based on natural gas steam reforming. Absorption-based DAC accounts for the highest capital expenditure (CAPEX) of the plant, whereas the proton-exchange membrane WE drives electricity consumption.