Yogesh Kumar, Wei Ren, Haiying Tao, Bo Tao, Laura E. Lindsey IN: Biochar, DOI: 10.1007/s42773-024-00391-6
The authors collected 539 paired globally published observations to study the impacts of biochar on SMBC under field experiments. The results suggested an overall positive impact of biochar (21.31%) on SMBC, varying widely with different climate conditions, soil types, biochar properties, and management practices. Biochar application exhibits significant impacts under climates with mean annual temperature (MAT) < 15 °C and mean annual precipitation (MAP) between 500 and 1000 mm. Soils of coarse and fine texture, alkaline pH (SPH), soil total organic carbon (STC) content up to 10 g/kg, soil total nitrogen (STN) content up to 1.5 g/kg, and low soil cation exchange capacity (SCEC) content of < 5 cmol/kg received higher positive effects of biochar application on SMBC. Biochar produced from crop residue, specifically from cotton and maize residue, at pyrolysis temperature (BTM) of < 400 °C, with a pH (BPH) between 8 and 9, low application rate (BAP) of < 10 t/ha, and high ash content (BASH) > 400 g/kg resulted in an increase in SMBC. Low biochar total carbon (BTC) and high total nitrogen (BTN) positively affect the SMBC. Repeated application significantly increased the SMBC by 50.11%, and fresh biochar in the soil (≤ 6 months) enhanced SMBC compared to the single application and aged biochar. Biochar applied with nitrogen fertilizer (up to 300 kg/ha) and manure/compost showed significant improvements in SMBC, but co-application with straw resulted in a slight negative impact on the SMBC. The best-fit gradient boosting machines model, which had the lowest root mean square error, demonstrated the relative importance of various factors on biochar effectiveness: biochar, soil, climate, and nitrogen applications at 46.2%, 38.1%, 8.3%, and 7.4%, respectively. Soil clay proportion, BAP, nitrogen application, and MAT were the most critical variables for biochar impacts on SMBC.
LINK