Abdolvahhab Fetanat and Mohsen Tayebi, IN: Process Safety and Environmental Protection, https://doi.org/10.1016/j.psep.2025.108031
As cities universally grapple with exacerbating challenges from environmental extremes such as wildfires, heat waves, air pollution, climate change, and carbon dioxide (CO₂) emissions, there is an urgent need for a decision support system (DSS) to provide actionable insights for policymakers and plan the mitigation of the adverse impacts of these extremes on communities. In this regard, climate intervention technologies are important and valuable technologies for sustaining cities under environmental extremes. Assessing these technologies for use as an optimal alternative is urgently needed in most of Iran’s southern regions due to the proximity of cities in these regions to oil, gas, and petrochemical systems. According to, in order to optimize the use of these technologies for the studied regions, an intelligent DSS based on a systematic model, namely the Delphi-fuzzy molecular ranking (DFMORAN) model is conducted by considering the sustainability and feasibility principles of different climate intervention technologies. For implementing the DEFMORAN model, ten climate intervention technologies consisting of 1) stratospheric aerosol injection (SAI), 2) space-based geo-engineering (SBG), 3) marine cloud brightening (MCB), 4) direct air capture with carbon storage (DACCS), 5) enhanced weathering, 6) biochar, 7) afforestation and reforestation (AR), 8) bioenergy with carbon capture and storage (BECCS), 9) soil carbon sequestration (SCS), 10) marine biomass and blue carbon (MBBC) are considered as decision-making alternatives. Also, an evaluation system containing 17 criteria-based sustainability and feasibility principles (economic, environmental, social, and feasibility aspects) is used.
LINK