Schlagwort: Direct Air Capture

Bisotti et al. (2023): Direct Air capture (DAC) deployment: A review of the industrial deployment

Filippo Bisotti, Karl Anders Hoff, Anette Mathisen, Jon Hovland IN: Chemical Engineering Science 283, 119416, https://doi.org/10.1016/j.ces.2023.119416

In seven years, CO2 removal (CDR) technologies are expected to reach a Technology Readiness Level (TRL), relevant to industrial applications. The most promising technologies are at TRL-7, but the jump to TRL-11 in the new IEA scale for disruptive technologies looks unlikely because the scale-up from small pilots to industrial scale requires time and large investments. Moreover, validation on a large scale is still missing or even unplanned. This work also identifies the critical materials supply chain and the competition with the energy transition as limiting factors which could further hinder DAC deployment and reduce DAC contribution in the next years when a first significant emissions cut should be addressed.

LINK

Firma saugt CO2 aus der Luft – was wirklich hinter der Wunderwaffe steckt

focus.de; 11.11.2023, 18:40

“ Einfach CO2 aus der Atmosphäre saugen, speichern und alles ist gut? Das ist das große Versprechen der CCS-Technologie. Der neueste Clou: Direkt aus der Atmosphäre das Gas absaugen und speichern. Doch die Technologie ist umstritten – zu Recht? […] In Kalifornien hat das Start-up-Unternehmen Heirloom Carbon Technologies nun eine Anlage gebaut , die CO2 direkt aus der Atmosphäre filtert. Dieses Verfahren, „Direct Air Capture“ genannt, könnte im Kampf gegen den Klimawandel entscheidend sein.“

LINK

Anlage saugt Kohlendioxid aus Luft: «CO2-Staubsauger»

faz.net; 24.10.2023 17:43 Uhr

„Ein sogenannter CO2-Staubsauger ist am Dienstag in Essen in Betrieb genommen worden. Die Anlage filtert das Treibhausgas Kohlendioxid direkt aus der Atmosphäre, wie das Start-up Greenlyte Carbon Technologies (GCT) mitteilte. Das Kohlendioxid kann anschließend dauerhaft gespeichert oder weiterverwendet werden. Geplant sei bereits die Verwendung für die Bierherstellung durch eine lokale Brauerei und durch einen Betonsteinhersteller, sagte GCT Mitgründer und Geschäftsführer Florian Hildebrand (33). Die etwa fünf Meter hohe «Greenberry 2» genannte Demonstrationsanlage sei mit einer Jahreskapazität von 100 Tonnen Kohlendioxid die bislang größte in Deutschland. Im kommenden Jahr will GCT solch eine Anlage erstmals vermarkten. Geplant ist ein Verkauf an ein Unternehmen in Kanada.“

LINK

An et al. (2023): A comprehensive review on regeneration strategies for direct air capture

Keju An, Kai Li, Cheng-Min Yang, Jamieson Brechtl, Kashif Nawaz IN: Journal of CO2 Utilization 76, 102587, https://doi.org/10.1016/j.jcou.2023.102587

Direct air capture (DAC) technologies require high regeneration energy to release CO2 from sorbents. Various approaches have been tested and optimized for different DAC systems. This review demonstrates that the work equivalent regeneration energy demand (supported by either the electric grid or fossil fuel combustion) ranges from 0.5–18.75 GJ/t-CO2 for solid sorbent DAC systems and 0.62–17.28 GJ/t-CO2 for liquid solvent DAC systems.

LINK

Bisotti et al. (2023): Direct air capture (DAC) deployment: National context cannot be neglected. A case study applied to Norway

Filippo Bisotti, Karl Anders Hoff, Anette Mathisen, Jon Hovland IN: Chemical Engineering Science 282, 119313, https://doi.org/10.1016/j.ces.2023.119313

DAC deployment is still an open question. Recent publications focused on energy consumption and the relationship between the cost of captured CO2 and operating conditions. These works addressed a preliminary assessment of the best locations but neglected the importance of the local context to succeed in implementing DAC in a specific country.

LINK

Abdallah et al. (2023): Laboratory aging of a dual function material (DFM) washcoated monolith for varying ambient direct air capture of CO2 and in situ catalytic conversion to CH4

Monica Abdallah, Yuanchunyu (Iris) Lin, Robert Farrauto IN: Applied Catalysis B: Environmental, 339, 123105, https://doi.org/10.1016/j.apcatb.2023.123105

A DFM has been designed for direct air capture of CO2 and in situ catalytic methanation for sustainable natural gas production. It is composed of 1% Ru, 10% “Na2O”/γ-Al2O3//ceramic monolith, the latter with high open frontal area to reduce pressure drop when processing real air. Extended laboratory aging was conducted using simulated ambient capture conditions varying in temperature and humidity for over 100 cycles (450+ hours on stream). The continuous test protocol was designed to simulate some representative ambient conditions expected during advanced pilot plant testing. The capture step was followed by catalytic hydrogenation of CO2 to methane during a temperature swing to 300°C.

LINK

Duan et al. (2023): Chemisorption and regeneration of amine-based CO2 sorbents in direct air capture

X. Duan, G. Song, G. Lu, Y. Wang, J. Sun, A. Chen, X. Xie IN: Materials Today Sustainability 23, 100453, https://doi.org/10.1016/j.mtsust.2023.100453

In DAC technology, amine-based solid chemisorbent materials have received great attention due to their low corrosivity, high adsorption capacity and cycling stability. This review summarizes the preparation methods and performance characteristics of current amine-modified sorbents, including the type of amine-based loading, the effect of porous support structure, amine-based MOFs and support-free polyamine sorbents.

LINK

Liu et al. (2023): Solar-assisted temperature vacuum swing adsorption for direct air capture: Effect of relative humidity

Y. Ji, W. Liu, J.Y. Yong, X.J. Zhang, L. Jiang IN: Applied Energy 348, 121493, https://doi.org/10.1016/j.apenergy.2023.121493

This paper aims to explore the potential of a temperature vacuum swing adsorption (TVSA) system for DAC which utilizes solar energy and condensation heat recovered from air conditioners. The effect of indoor environmental parameters especially for relative humidity (RH) is targeted for carbon removal processes.

LINK

Zeeshan et al. (2023): Direct air capture of CO2: from insights into the current and emerging approaches to future opportunities

Muhammad Zeeshan, Michelle K. Kidder, Emily Pentzer, Rachel B. Getman, Burcu Gurkan IN: Frontiers in Sustainability, 4, https://doi.org/10.3389/frsus.2023.1167713

The authors provide a mini review of the current research on the emerging liquid- and solid-based sorbent materials to capture CO2, summarize the existing challenges of DAC technologies, and suggest future research directions to accelerate the development of DAC systems. In particular, the desired properties for a breakthrough sorbent that efficiently captures CO2 from the air and releases it for sequestration are described.

LINK

Shu et al. (2023): Optimization of an electrochemical direct air capture process with decreased CO2 desorption pressure and addition of background electrolyte

Qingdian Shu, Ching Shing Sin, Michele Tedesco, Hubertus V.M. Hamelers, Philipp Kuntke IN: Chemical Engineering Journal 470, 144251, https://doi.org/10.1016/j.cej.2023.144251

An electrochemical process based on pH-swing has been proposed recently to regenerate spent alkaline absorbent from direct air capture (DAC). In this work, the authors experimentally investigated and theoretically simulated two optimization strategies to further reduce the energy consumption of such novel electrochemical process.

LINK