Schlagwort: Direct Air Capture

Balasubramaniam (2024): Process-performance of solid sorbents for Direct Air Capture (DAC) of CO2 in optimized temperature-vacuum swing adsorption (TVSA) cycles

Bhubesh Murugappan Balasubramaniam, Phuc-Tien Thierry, Samuel Lethier, Veronique Pugnet, Philip Llewellyn, Arvind Rajendran IN: Chemical Engineering Journal 485, 149568, https://doi.org/10.1016/j.cej.2024.149568

The process performance of three amine-functionalized chemisorbents and two physisorbents was evaluated for direct air capture of CO2 in temperature-vacuum swing adsorption and steam-assisted temperature-vacuum swing adsorption cycles. The study showed that physisorbents, generally not studied for DAC, can be promising. Parametric studies revealed that the lack of multi-component thermodynamic and kinetic data impedes the objective evaluation of DAC processes.

LINK

Master thesis: Potential analysis of the integration of flexibly operated Direct Air Capture (DAC) plants in the heat and power system using the example of Hamburg

Moritz Rickert, Hamburg University of Applied Sciences, http://hdl.handle.net/20.500.12738/14920

For climate neutrality by 2045, Germany must compensate unavoidable residual greenhouse gas emissions by negative emission technologies such as direct air capture technology. This study explores the technical feasibility and economic viability of implementing flexibly operated DAC plants in Hamburg’s district heating system in 2045.

LINK

Ignatusha et al. (2024): Membrane Separation Technology in Direct Air Capture

Pavlo Ignatusha, Haiqing Lin, Noe Kapuscinsky, Ludmila Scoles, Weiguo Ma, Bussaraporn Patarachao, Naiying Du IN: Membranes 14(2), 30, https://doi.org/10.3390/membranes14020030

Current DAC technologies mainly consider sorbent-based systems; however, membrane technology can be considered a promising DAC approach since it provides several advantages, e.g., lower energy and operational costs, less environmental footprint, and more potential for small-scale ubiquitous installations. In this article, the ongoing research and DAC application attempts via membrane separation have been reviewed. 

LINK

Master-thesis: Generalized Process Model for Solid Sorbent Direct Air Capture Contactors

Kshitij Mukeshbhai Patel, Arizona State University, https://keep.lib.asu.edu/items/190764

Extensive research and projections have suggested that DAC has tremendous potential to achieve global climate change mitigation goals. The feasibility of DAC is proven but work is required to bridge gaps in DAC research to make it affordable and scalable. Process modelling is an approach used to address these concerns. Current DAC research in system design and modelling is discrete and existing models have limited use cases. This thesis is focused on the development of a generalized process mass transfer model for the capture stage of solid sorbent DAC contactors.

LINK

Arwa and Schell (2024): Batteries or silos: Optimizing storage capacity in direct air capture plants to maximize renewable energy use

Erick O. Arwa, Kristen R. Schell IN: Applied Energy 355, 2024, 122345, https://doi.org/10.1016/j.apenergy.2023.122345

DAC is an energy intensive chemical process, whose designs are currently incompatible with intermittent renewable energy (RE) sources. This research develops a model to enable the flexible operation of DAC, to maximize RE usage. A new model of the chemical process flow of a liquid solvent DAC that includes silos to store CaCO3 and CaO is developed. A linear programming optimization model that minimizes energy costs while achieving the CO2 capture targets of the DAC plant is developed. Scenario analysis establishes the storage silo size and battery storage size needed to reduce renewable energy curtailment to zero for a given RE profile.

LINK

Book: Cost Analysis of Adsorption based Air Capture of CO2

Mona Muzammil, Muzammil Arshad, Muazzam Arshad; Edinburg: The University of Texas Rio Grande Valley. https://scholarworks.utrgv.edu/chem_fac/262.

The book opens with an introductory section that provides background regarding the need to reduce greenhouse gas emissions, an overview of carbon capture and storage (CCS) technologies, and a primer in the fundamentals of power generation. Chapters focus on key carbon capture technologies, including absorption, adsorption, and membrane-based systems, addressing their applications in both the power and non-power sectors.

LINK

Bisotti et al. (2023): Direct Air capture (DAC) deployment: A review of the industrial deployment

Filippo Bisotti, Karl Anders Hoff, Anette Mathisen, Jon Hovland IN: Chemical Engineering Science 283, 119416, https://doi.org/10.1016/j.ces.2023.119416

In seven years, CO2 removal (CDR) technologies are expected to reach a Technology Readiness Level (TRL), relevant to industrial applications. The most promising technologies are at TRL-7, but the jump to TRL-11 in the new IEA scale for disruptive technologies looks unlikely because the scale-up from small pilots to industrial scale requires time and large investments. Moreover, validation on a large scale is still missing or even unplanned. This work also identifies the critical materials supply chain and the competition with the energy transition as limiting factors which could further hinder DAC deployment and reduce DAC contribution in the next years when a first significant emissions cut should be addressed.

LINK

Firma saugt CO2 aus der Luft – was wirklich hinter der Wunderwaffe steckt

focus.de; 11.11.2023, 18:40

“ Einfach CO2 aus der Atmosphäre saugen, speichern und alles ist gut? Das ist das große Versprechen der CCS-Technologie. Der neueste Clou: Direkt aus der Atmosphäre das Gas absaugen und speichern. Doch die Technologie ist umstritten – zu Recht? […] In Kalifornien hat das Start-up-Unternehmen Heirloom Carbon Technologies nun eine Anlage gebaut , die CO2 direkt aus der Atmosphäre filtert. Dieses Verfahren, „Direct Air Capture“ genannt, könnte im Kampf gegen den Klimawandel entscheidend sein.“

LINK

Anlage saugt Kohlendioxid aus Luft: «CO2-Staubsauger»

faz.net; 24.10.2023 17:43 Uhr

„Ein sogenannter CO2-Staubsauger ist am Dienstag in Essen in Betrieb genommen worden. Die Anlage filtert das Treibhausgas Kohlendioxid direkt aus der Atmosphäre, wie das Start-up Greenlyte Carbon Technologies (GCT) mitteilte. Das Kohlendioxid kann anschließend dauerhaft gespeichert oder weiterverwendet werden. Geplant sei bereits die Verwendung für die Bierherstellung durch eine lokale Brauerei und durch einen Betonsteinhersteller, sagte GCT Mitgründer und Geschäftsführer Florian Hildebrand (33). Die etwa fünf Meter hohe «Greenberry 2» genannte Demonstrationsanlage sei mit einer Jahreskapazität von 100 Tonnen Kohlendioxid die bislang größte in Deutschland. Im kommenden Jahr will GCT solch eine Anlage erstmals vermarkten. Geplant ist ein Verkauf an ein Unternehmen in Kanada.“

LINK

An et al. (2023): A comprehensive review on regeneration strategies for direct air capture

Keju An, Kai Li, Cheng-Min Yang, Jamieson Brechtl, Kashif Nawaz IN: Journal of CO2 Utilization 76, 102587, https://doi.org/10.1016/j.jcou.2023.102587

Direct air capture (DAC) technologies require high regeneration energy to release CO2 from sorbents. Various approaches have been tested and optimized for different DAC systems. This review demonstrates that the work equivalent regeneration energy demand (supported by either the electric grid or fossil fuel combustion) ranges from 0.5–18.75 GJ/t-CO2 for solid sorbent DAC systems and 0.62–17.28 GJ/t-CO2 for liquid solvent DAC systems.

LINK