Lin et al. (2025): Interactive effects of warming and drought on soil organic carbon sequestration and methane uptake in straw and biochar amended soils: Mechanisms and global implications
Jitong Lin, Guopeng Liang, Marcela Hernández, Zhiyu Xu, Yinghao Xue, Renhua Sun, Yuanfeng Sun, Lulu Dai, Yanhong Lou, Haojie Feng, Hui Wang, Quangang Yang, Hongjie Di, Hong Pan, Yuping Zhuge, IN: Chemical Engineering Journal, https://doi.org/10.1016/j.cej.2025.164817
The interactive effects of warming and drought on soil carbon-methane feedback in straw- versus biochar-amended agricultural systems need more comprehensive quantification, despite their critical implications for climate-smart soil management. By integrating controlled incubation experiments with a global meta-analysis (105 observations), the authors revealed that drought suppressed CH₄ uptake by 58.9% in carbon-amended soils through synergistic depletion of methanotrophic functional capacity (pmoA gene abundance) and microbial biomass carbon, while attenuating thermal sensitivity of methane uptake.